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Abstract
This paper describes a visual feedback control scheme
for an inverted pendulum, using a vision system equipped
with a digital camera as sensor to obtain information of
the system. Results are presented in simulation.

1 Introduction
Traditionally visual sensing and manipulation are com-
bined in an open-loop fashion, `looking' then `moving'.
The accuracy of the operation depends directly on the ac-
curacy of the visual sensor and the manipulator and its
controller. An alternative to increasing the accuracy of
these subsystems is to use a visual feedback control loop,
which will increase the overall accuracy of the system:
a principle concern in any application. The term visual
servoing was introduced by Hill and Park in 1979 to dis-
tinguish their approach from earlier `blocks world' ex-
periments where the system alternated between picture
taking and moving [3].

Visual feedback is the use of the visual informa-
tion in control, using elementary areas including digi-
tal signal processing, kinetics, dynamics, control theory,
real-time computing among others [3, 5, 6].

Underactuated mechanical systems are systems
with fewer actuators than degrees of freedom.

Exist many examples, such as the inverted pen-
dulum, the gymnast robots and particularly the acrobot,
the pendubot, the planar vertical takeoff and landing air-
crafts, the undersea vehicles and other mobile robots [1,
2, 8].

In the literature many research efforts have been
made on control aspects but the �eld of control of such
systems still open to develop other control strategies.
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The remainder of the paper is organized as fol-
lows: In Section 2 the modeling of the inverted pendulum
system and the camera of vision is presented. The con-
troller design is obtained in Section 3. Section 4 presents
the simulation results. Finally, the conclusions and future
works are given in the Section 5.

2 Modeling of the Camera and In-
verted Pendulum System

In this section, we develop a mathematical model for the
inverted pendulum as well as camera and study the prop-
erties of these models.

Figure 1: Camera inverted pendulum system.

2.1 Inverted Pendulum System
An inverted pendulum is a physical device that consists
on one cylindrical bar (pendulum) that oscillates freely
around a �xed point (with certain mechanical restrictions,
since just it can move in a plane). This pendulum is
mounted on a mobile piece (cart) that moves in horizon-
tal direction [9]. The objective of this paper is the control
with visual feedback of the inverted pendulum where the
sensor is a digital camera to measure the position of the
Pendulum and the cart. The Figure 1 shows the camera
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inverted pendulum system, whose main parameters are
given by the Table 1.

Table 1: Parameters and the values of the system.

Var. Name Values Units
u Input volts
p Car position m

θ

Angle between the
vertical and the po-
sition of the pendu-
lum

rad

l
Length to the center
of mass of the pen-
dulum

0.32 m

m Pendulum mass 0.23 kg
M Car mass 0.52 kg

g
Gravity accelera-
tion 9.81 m/sec2

J
Pendulum moment
of inertia, about its
center of gravity

0.007 Kg ·m2

The corresponding equations of motion are de-
rived using Lagrange's equations [11]

d

dt

[
∂

∂q̇L
]
− ∂

∂qL = τ (1)

where L denotes the Lagrange-function, de�ned by
L = K − V , where K is the kinetic energy and V is the
potential energy.

For the inverted pendulum the kinetic energy is
given by

K =
1
2
Mṗ2 +

1
2
mv2 +

1
2
Jθ̇2 (2)

where

v2 = ṗ2 + l2θ̇2 + 2ṗθ̇l cosθ

while the potential energy, is given by

V = mgl cos θ (3)

where the generalized coordinates vector is

q(t) =
[
p (t)
θ (t)

]
(4)

resulting the nolinear equations that describe the system
dinamics

(M+m) p̈+mlθ̈ cos θ−lmθ̇2senθ=u (5)
(
ml2+J

)
θ̈+mlp̈ cos θ−mglsenθ=0 (6)

choosing the state variables as

x1 = p, x2 = ṗ, x3 = θ, x4 = θ̇ (7)

we have

ẋ1 = x2 (8)

ẋ2 =−m
2l2g sin x3 cos x3+(ml2+J)(mlx2

4 sin x3+u)
(M+m)(ml2+J)−m2l2 cos2 x3

(9)
ẋ3 = x4 (10)

ẋ4 =mlg(M+m) sin x3−ml(u+mlx2
4 sin x3) cos x3

(M+m)(ml2+J)−m2l2 cos2 x3
(11)

in matrix form (8)-(11)

ẋ = f (x) + g (x)u (12)

where

f (x)=




x2
−m2l2g sin x3 cos x3+mlx

2
4(ml2+J) sin x3

(M+m)(ml2+J)−m2l2 cos2 x3

x4
mlg(M+m)sin x3−m2l2x2

4 sin x3 cos x3
(M+m)(ml2+J)−m2l2 cos2 x3


 (13)

and

g (x)=




0
ml2+J

(M+m)(ml2+J)−m2l2 cos2 x3

0
− ml cos x3

(M+m)(ml2+J)−m2l2 cos2 x3


 . (14)

The proposed outputs are y1(T ) = p(t) and
y2(T ) = θ(t).

2.1.1 Linear model

For the design of the controller the model is linearized
around an equilibrium pointx∗ = 0 by the Taylor's series
expansion of (12),
we have a linear model

ẋ = Ax + Bu (15)
y = Cx (16)
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where

A=
∂f

∂x

∣∣∣∣
x=x∗

=




0 1 0 0
0 0 −m2l2g

a 0
0 0 0 1
0 0 mlg(M+m)

a 0


 (17)

B = g (x∗) =




0
ml2+J
a
0
−ml
a


 (18)

C =
[

1 0 0 0
0 0 1 0

]
(19)

where

a = (M +m)
(
ml2 + J

)−m2l2.

2.2 Discrete Model
In this section we obtain a discrete linear model that it
will be used for the control design. Using a sampling
period T = 5 ms, the discret system obtained is the fol-
lowing

x((k + 1)T ) = Φx(kT ) + Γu(kT ) (20)
y(kT ) = Cx(kT ) (21)

where

Φ =




1 0.005 0 0
0 1 −0.0152 0
0 0 1.0004 0.005
0 0 0.1546 1.0004


 (22)

Γ =




0
0.0087

0
−0.0210


 . (23)

2.2.1 Controlability and Observability

The necessary and suf�cient condition for the system to
be controllable (observable) is: the controlability (obsev-
ability) matrix (24) y (25) must be full rank [7].

Wc =
[

Γ ΦΓ Φ2Γ Φ3Γ
]

(24)

Wo =
[

C CΦ CΦ2 CΦ3
]T (25)

2.3 Camera Model
Here we propose a camera model. It is consider as delay
system with a proportional gain.

Figure 2: Blocks diagram of the camera.

The input of the cameraul (kT ) is de�ned for the
output of the inverted pendulum system, i.e. ul (kT ) =
Cx (kT ), according to the Figure 2 we have

xl ((k + 1)T ) = klul (kT )=klCx (kT ) (26)
yl (kT ) = xl (kT ) (27)

where

xl (kT ) =
[
pl(Kt)
θl(kT )

]
(28)

Finally the complete model of the camera-inverted
pendulum system is given by

xc ((k + 1)T ) = Φcxc (kT ) + Γcu (kT ) (29)
yc (kT ) = Ccxc (kT ) (30)

where

Φc =
[

Φ 0
klC 0

]
(31)

Γc =
[

Γ
0

]
(32)

Cc =
[

02×4 I2×2

]
(33)

the estates vector xc (kT ) is de�ned by the estates of in-
verted pendulum and the estates of the camera, i.e.

xc (kT ) =
[

x (kT )
xl (kT )

]
. (34)

3 Design of a Controller and Ob-
server

In this section it is assumed that the state of the extended
system (29) - (30) is not available for measurement, and
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only we have the variables that gives the camera. The
control system includes linear quadratic regulator (LQR)
using an estimated state vector. A control scheme is
shown in Figure 3.

Figure 3: Control scheme withkr = −8.79.

3.1 Observer Design
We proposed an observer for the extended system in the
Luenberguer's form.

x̂c ((k+1)T) = Φcx̂ (kT)+Γcu (kT)+Lỹ(kT ) (35)
ŷc (kT ) = Ccx̂ (kT ) (36)

where x̂ is the estimate estate, ỹ(kT ) is the estimate er-
ror and L is a gain constant matrix, with desired poles in
λ1 = 0.35, λ2 = 0.36, λ3 = 0.37, λ4 = 0.38, λ5 = 0.39
and λ6 = 0.4, the gain matrix L is obtained

L =




0.0008 0.0
0.0338 0.0008

0.0 0.0008
0.0007 0.0342
0.8736 0.0160
0.0138 0.8772



. (37)

3.2 Controller
In this section a controller LQR is designed, where the
criterion to minimize is given by

J =
1
2

∞∑

K=0

[
xT (k) Qx (k) + uT (k) Ru (k)

]
(38)

where the matrices Q and R are

Q =




80 0 0 0 0 0
0 0 0 0 0 0
0 0 15 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(39)

R = 1. (40)

And the control gain is

K =




−8.5878
−6.8641
−34.2686
−6.6463

0
0




T

. (41)

4 Simulation Results
The simulations of system in close-loop were perfor-
mance in Matlab [10]. The simulation results are given
in Figure 4

5 Conclusions
In this work the control of the inverted pendulum is pre-
sented using a camera of vision as a sensor to observe
the position of the pendulum and the position of the cart.
The simulation results show a good performance of the
close-loop system.

Currently, we are working in real-time implemen-
tation using Texas Instrument DSP.
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